
MDS: The

Strategic

Advantage

for Future

Flight

Projects

M i s s i o n . D a t a . S y s t e m

M.
D.S

C o n t e n t s

A New Approach

Design Philosophy

MDS Benefits

MDS Implementation

Research & Commercial

Opportunities

2
8

16

24

20

We are entering a new era of solar system explora-

tion. Until recently, deep space missions tended to be

one-of-a-kind, with distinct science objectives, instru-

ments, and mission plans. Missions were spaced years

apart, and mission software was developed indepen-

dently for communications, commanding, attitude con-

trol, navigation, and other recurring tasks.

Software design also was limited by the radiation-

hardened flight processors that were years behind their

commercial counterparts in speed and memory, limiting

performance and science returns.

The need for a new approach to software development

became apparent with the demand for smaller, low-cost

deep space missions. When the Jet Propulsion Labora-

tory (JPL) launched six missions in six months between

October 1998 and March 1999, there was no common

framework for developing mission software and little

software reuse; each mission either built the software

from scratch or tried to reuse software that was never

designed for reusability.

2

A . N e w . A p p r o a c h

3

MDS

architectural

design creates

an approach

in which soft-

ware engineers

and systems

engineers

communicate

in a common

language.

A . N e w

Future missions require
a new vision

MDS may be the single answer for

developing software for future mission

requirements. Using our current

practices, missions will remain costly if

software cannot be reused efficiently.

Science returns will be limited if

resources are underutilized. And

missions will require more autonomous

capabilities for in situ exploration. MDS

addresses these issues and offers a

solution by unifying software and

systems engineering. The MDS approach

makes reuse possible, provides

resource management to maximize

spacecraft returns, and supports

autonomous capabilities.

4

Future missions obviously will re-
quire reusable software. This soft-
ware must accommodate more com-

plex, autonomous science returns
and easy infusion of new technolo-
gies. Our challenge is to design reli-

able software that expands mission
capabilities and that can be reused
efficiently and effectively in various

mission scenarios.

In April 1998, JPL began to address
this challenge. The Laboratory initi-

ated the Mission Data System (MDS)
to rethink the mission software life
cycle and to develop software archi-

tectures that accommodate the com-
plexities of future mission require-
ments. Three years of thoughtful ef-

fort have produced a unified flight,
ground, and test data system archi-
tecture that is revolutionary in scope

and vision. This component-based,
object-oriented design assimilates
generations of JPL’s domain knowl-

edge and addresses several mission
needs: It allows software reuse, ex-
pands autonomous capabilities for

in situ exploration, and establishes a
basis for infusion of new software
technologies.

Meeting New Mission

Demands

As we launch more missions in
shorter timeframes, we need soft-
ware that can be reused from mis-

sion to mission. MDS can accom-
plish this by taking advantage of the

recent advancements in flight com-
puters. These computers allow flight

and ground elements to share the
same architecture and accommodate a
common framework — a key compo-

nent of the MDS software approach.
This common framework eliminates
duplication of software development,

simplifies the integration of new ele-
ments, and allows many ground capa-
bilities to be migrated to flight.

Missions are evolving from reconnais-
sance and mapping at safe distances to
in situ exploration in dynamic and

unpredictable environments. To pro-
duce successful science returns,
onboard resources must be managed

and data must be assessed in real time
to make on-the-spot changes for fur-
ther observations. These autonomous
capabilities require large investments

of time and money — investments
that individual projects cannot reason-
ably sustain.

The MDS architecture significantly im-
proves software design. This object-
oriented design can integrate new ca-

pabilities easily; it also gives software
engineers the tools to express mission
and systems engineering concepts in a

natural language, creating software
that is flexible, easily maintainable,
and, most important, reliable.

MDS promises to meet new mission
demands by expanding mission capa-
bilities, increasing scientific returns,

5

and providing a foundation for

reusable software. The philosophy,
application, and various benefits of
MDS are described in the following

sections.

Complementary Engineering

Approach

As technology changes, so must our
engineering practices. Traditionally

we have separated systems engineer-
ing from software development.
However, software engineering and

systems engineering are highly inter-
dependent. Systems engineering
must understand what the system

is supposed to do, whereas software
engineering must understand how
the system will do it. In other words,

software manages a system’s capabili-
ties and resources, whereas systems
engineering identifies the required

capabilities and resources.

The MDS architecture supports this
complementary approach. The de-

sign allows software engineers and
systems engineers to communicate
within a common “language,” in

which software abstraction is defined
within the language of systems engi-
neering. As a result, software engi-

neers and systems engineers share a
common approach to defining, de-
scribing, developing, understanding,

testing, operating, and visualizing

what systems do. The net result:
systems that are more reliable, cost-
effective, and reusable.

MDS Core Product

The MDS core product is a unified ar-

chitectural framework for building
end-to-end flight and ground software
systems. This framework includes the

necessary elements for building goal-
oriented, autonomous commanding;
intelligent data management and

transport; integrated guidance, naviga-
tion, and control, and most other capa-
bilities needed for mission software.

MDS core products include design pat-
terns for adapting the framework for

software mission functions. Custom-
ers also receive a set of pre-integrated

and pretested frameworks, complete
with executable example uses of
those frameworks running a simu-

lated mission. The design is object-
oriented, and the framework design
is expressed in Unified Modeling

Language (UML).

Customers who use the MDS frame-
work can focus on mission-

specific design and development
without having to create and test a
supporting infrastructure. As MDS

matures, new and innovative design
concepts will be incorporated in the
framework — increasing the

framework’s capabilities.

6

The MDS architecture is designed for goal-oriented

control, enabling autonomous robots — spacecraft,

rovers, and ground stations. Externally, MDS takes

goals as input and interacts with hardware to

achieve the goals. Internally, the architecture

emphasizes the central role of state knowledge and

related models. Together they serve estimators and

controllers in a disciplined structure for closed-loop

control. Telemetry provides external visibility of

internal activities.

7

The MDS framework evolves from a new way of

thinking about how software engineering is prac-

ticed. The design philosophy MDS has adopted is

based on the best practices from various disci-

plines like control systems, robotics, data network-

ing, software engineering, and artificial intelli-

gence. This design unifies systems engineering and

software engineering practices — a desperately

needed capability. The design philosophy is based

on 13 key themes, each expressing an innovative

design approach to solving specific problems.

Theme 1: Construct subsystems from archi-

tectural elements, not the other way round.

Problem MDS Addresses: A priori partitioning of soft-
ware development tasks along traditional subsystem

boundaries encourages multiple, point-design solu-
tions, decreasing efficiency and reuse value and com-
plicating integration.

The traditional approach to software design for
deep space missions has been to compartmentalize
the work, resulting in individual software engi-

neering teams applying their own solutions to
common problems. The specialized products that
result have minimal reuse value and require many

iterations to integrate with other subsystems. MDS
reverses this process by identifying common prob-
lems and then posing common solutions that can

be tailored to each particular application. This col-
lection of common solutions is referred to as the

8

A . N e w . P h i l o s o p h y

9

D e s i g n

State is

the unifying

concept

for MDS.

Modeling the

system and

its state is

important,

and the MDS

approach does

this very

effectively.

MDS framework. A fundamental
driver in selecting this framework is

the recognition that space system de-
signs are always tightly coupled.
Constrained resources demand it, so

managing these interactions is the
foundation of good software design
in such systems. The MDS frame-

works have been designed from the
outset to uniformly address this
need.

Theme 2: Migrate capability from

ground to flight, when appropriate,

to simplify operations.

Problem MDS Addresses: When flight

and ground software systems are de-
signed and implemented as distinct dis-
ciplines, operational constraints of de-

ployment across platforms are not ad-
dressed, preventing easy migration be-
tween ground and flight. However, this

migration is essential to flight system
autonomy.

Increasingly powerful flight proces-

sors make it possible to migrate func-
tions that have traditionally been
performed on the ground to a space-

craft or rover. This migration might
occur after launch — after ground
operators have gained experience

with the vehicle and have decided
that some activities can be auto-
mated without further human-in-the-

loop control. In some cases, the same
code may be used for both flight and
ground control. However, even in

cases where flight implementations
are different because they exploit the
immediacy of their interactions with

the spacecraft, the uniformity of

addressing other system elements
permits these migrations to take

place with minimal perturbation to
the rest of the system.

More importantly, there is a need

for such migration to accomplish
missions that must react quickly to
events without earth-in-the-loop,

as is the case with an autonomous
landing on a comet or rover explora-
tions on the surface of Mars. By

adopting a unified architecture, we
can address a wide range of mission
possibilities using a single MDS

framework. To accomplish this,
both flight and ground capabilities
must be designed within a shared

architecture.

Theme 3: System state and mod-

els form the foundation for infor-

mation processing.

Problem MDS Addresses: To provide an
architecture that is capable of spanning

a wide variety of domains and to orga-
nize a systems engineering and design
process that is structured and conducive

to software adaptation, we need a uni-
fying theme for describing expected and
desired system behaviors.

MDS is a state-based architecture —
state and models are central to the
MDS framework. State describes the

momentary condition of an evolving
system, and models describe how
those states evolve in time. Together,

state and models supply all the infor-
mation needed to operate a system,
predict future state, control toward

a desired objective, assess perfor-
mance, and more.

10

IO’S PLAINS

COULD ALMOST

BE MISTAKEN

FOR AERIAL

PHOTOS OF

ROAD SYSTEMS

HERE ON EARTH.

LONG, PROMI-

NENT FRACTURE

In a typical MDS adaptation, the to-
tality of state representations provides

a representation of the total system
that is sufficiently complete to pro-
vide adequate knowledge of state for

all purposes. While there may be ele-
ments of a project outside the MDS
purview, even the external elements

are described at least by their behav-
ior. In all cases, state is accessible glo-
bally in a uniform way through state

variables, as opposed to a program’s
local variables.

Theme 4: Express domain knowl-

edge explicitly in models rather

than implicitly in program logic.

Problem MDS Addresses: Domain knowl-
edge about mission instruments, actua-
tors, sensors, plumbing, wiring, and other

elements must be consistently expressed
from mission to mission if flight software
is to be reused. Conventional practice de-

velops programs in which the logic im-
plicitly contains this domain knowledge
but expresses the knowledge in a “hid-

den” form that is difficult to validate
and reuse.

MDS expresses domain knowledge

more explicitly in inspectable models.
These models can be any of several
forms, as long as they separate the do-

main knowledge from the general
logic for applying that knowledge to
solve a problem. The task of customiz-

ing MDS for a mission, then, becomes
largely a task of defining and validat-
ing models.

System state is the

architectural centerpiece

for information process-

ing in MDS. This state-

based architecture allows

complex system behavior

to be captured in a

simple, straightforward

design.

11

Theme 5: Operate missions using

specifications of desired state,

rather than as sequences of ac-

tions.

Problem MDS Addresses: Mission
operations procedures that are based

on detailed specification of sequences
of actions limit onboard autonomy,
underutilize onboard resources, and

increase operations cost.

Traditionally, spacecraft are controlled
through linear (nonbranching) com-

mand sequences that are carefully de-
signed on the ground. This approach,
however, is difficult for two reasons.

First, ground personnel must accu-
rately predict spacecraft state for the
time at which the sequence is sched-

uled to start and throughout its ex-
ecution. Second, in the event that the
actual spacecraft state departs from

the predicted state, the sequence must
be designed to terminate early and
trigger a “safing” response rather than

risk that the continued sequence ex-
ecution will result in harm.

Even when some branching is al-

lowed, it has generally been highly
constrained because developing such
a sequence amounts to writing a

program — not the best approach to
routine operation. For this reason,
even such limited measures have gen-

erally been restricted to highly critical
activities.

In contrast, MDS controls both flight

and ground state through goals. A
goal is expressed as a constraint on a
state over some time interval. Unlike

a command, which says what to do, a

goal specifies an intent in the form
of desired or acceptable states. Simi-

larly, timing is controlled by con-
straints on when goals apply. Unlike
a timed command, where the time to

issue the command is specified pre-
cisely, goals may apply over flexible
time intervals, depending on events

or on other system activities, as ad-
justed automatically by the system.

Goal-directed operation is simpler

than traditional sequencing because
a goal is easier to specify than the
actions needed to accomplish it.

More importantly, goals specify only
success criteria; they leave options
open about the means and timing of

accomplishing the goal and the pos-
sible use of alternate actions to re-
cover from problems.

Theme 6: Design for real-time re-

action to changes in state rather

than for open-loop commands or

earth-in-the-loop control.

Problem MDS Addresses: An open-loop

command sequence used for high-level
operations leaves the system vulnerable
to unanticipated changes due to variable

system behavior, faults, or an uncertain
environment. For effective in situ explo-
ration, this practice is undesirable, and

even in interplanetary space leads to un-
satisfactory performance.

Goal-directed operation implies

closed-loop control. This means that
the steps taken to achieve goal suc-
cess may be reconsidered and ad-

12

justed by the system in response to an
immediately observed state of the sys-

tem. In MDS parlance, a state control-
ler is called a goal-achieving module
(GAM). A GAM controls state by com-

paring present state to desired state,
deciding how to change the state, if
necessary, and then issuing either

sub-goals to lower-level GAMs or issu-
ing direct low-level actions (i.e.,
primitive actions). These steps may be

taken well in advance of the initiating
goal, if necessary. When a GAM ac-
cepts a goal, it must either achieve

the goal or responsibly report that it
cannot. A GAM’s logic can be arbi-
trarily simple or sophisticated, but it

must always keep the goal issuer in-
formed about the goal’s status.

Most GAMs achieve their goals by is-

suing sub-goals, thus creating a hier-
archy of GAMs that terminates in
primitive actions. GAMs can report

why they acted as they did in terms
of what discrepancies between state
and goals prompted action, and what

sub-goals or commands were issued in
response. Since GAMs are self-check-
ing by definition, goal failures will be

overtly visible (through goal status)
during testing.

Theme 7: Fault protection must

be an integral part of the design,

not an add-on.

Problem MDS Addresses: Fault protec-
tion has generally been viewed and de-
signed separately from the nominal sys-

tem control functions. Moreover, the
fault protection design usually lags
behind the nominal system, which is

designed with little consideration to its
needs. As a result, fault protection gen-
erally gets little help — and often only

receives interference — from the under-
lying system.

Fault protection by its nature is a

closed-loop process that responds to
observed conditions of a system.
This process is fundamentally in-

compatible with an open-loop model
of command sequencing, although it
is intrinsic to a goal-directed opera-

tion. In MDS, fault protection can be
woven seamlessly into the larger fab-
ric of robust control.

Goal-achieving modules in MDS
need some minimum level of fault
detection to enable them to report

when an active goal is not being
achieved due to a fault. Fault detec-
tion is provided through state deter-

mination in which fault monitoring
is an integral part. Because fault pro-
tection arrives concurrently for test-

ing as part of the nominal system
functionality, it can be an extremely
valuable aid to system testing.

13

Theme 8: Resource usage must

be authorized and monitored

by a resource management

mechanism.

Problem MDS Addresses: Currently our

spacecraft capabilities are vastly
underutilized because of concerns about
maintaining resource margins. Onboard

resource monitoring and management
is limited, yet is essential to avoid over-
subscription of limited resources.

Liberal use of resources without safe-
guards is potentially hazardous.
Consequently, ground operators are

cautious about overextending re-
sources such as power and propel-
lant, and tend to maintain large

margins of these resources.
Underutilizing resources limits the
amount of science data acquisition
and return, especially during time-

constrained activities like a fly-by or
a science experiment with short-
lived instruments. Resource manage-

ment is also a major concern during
in situ exploration or fault responses
when unanticipated factors can af-

fect resource usage.

MDS addresses these problems
through a resource management

mechanism that avoids overuse.
Limited resources are prioritized by
goals, so if there is no other recourse

— such as in rescheduling — the
system can arbitrate among con-
tenders how resources should be

used. Because resource managers al-
ways know how much of each re-

Fault protection is typically

an add-on. One mission

team spent six months in

extensive testing before

enabling fault protection.

The result was surprising:

numerous design errors

were detected in the control

system. The mission team

learned more in a single

month running fault protec-

tion than they had in six

months of intense testing.

14

source is subscribed, resource usage

can be maximized, thereby maximiz-
ing performance, while remaining
safe.

Theme 9: For consistency, sim-

plicity and clarity, separate state

determination logic from control

logic.

Problem MDS Addresses: A typical but

ineffective practice in software develop-
ment is to co-mingle control logic with
state-determination logic. Assessments

of the current state, upon which deci-
sions are made, are often implicit and
difficult to inspect and verify. This co-

mingling of logic also confounds at-
tempts at reuse.

Architecturally, MDS separates state

determination from state control,
which are coupled only through state
variables. State determination is the

process of interpreting measurements
and other data to generate state
knowledge supplied to a state vari-

able as an estimate. Control, in con-
trast, attempts to achieve goals by is-
suing commands and sub-goals that

should drive estimated state toward
desired state. Keeping these two tasks
separate simplifies design, program-

ming, and testing, and allows for re-
use and independent improvements.

Theme 10: State determination

must be honest about the evi-

dence; state estimates are not

facts.

Problem MDS Addresses: Conflicting or

incomplete information is an unavoid-
able source of trouble that is dangerous
if ignored.

State values are rarely known with
certainty due to elements like con-
flicting evidence, characteristic

degradation of sensors, failures, and
periods of rapid dynamic change.
Disastrous errors can result when

control decisions are based on highly
uncertain state values. For example, it
is unwise to perform a main-engine

burn when uncertainty in the esti-
mated position of the engine gimbals
is large. Problems also can arise from

incompatible decisions if different
parts of the system react to different
evidence.

In the MDS approach, all knowledge
of any particular state is captured in a
single-state variable. Moreover, a

level of certainty accompanies every
state estimate so that control can take
into account the certainty level when

using state values. If certainty drops
below some context-specific mini-
mum, then control must react appro-

priately, perhaps by acquiring addi-
tional data or attempting an alternate
approach or by abandoning a goal

entirely.

15

Using the high-performance, commer-

cially standard flight processors now

available, MDS can eliminate redun-

dancy in the development of flight,

ground, and test software, reducing

 mission costs, increasing reliability,

and expanding mission capabilities.

M D S . B e n e f i t s

The MDS architecture allows missions

to construct, from a common set of

core elements, a wide variety of soft-

ware for complex applications —

entry-descent-landing (EDL), formation

flying, in situ exploration, cross-link

vehicle-to-vehicle operation, and more.

Mission designs have many things in

common, so the design process can be

complementary from one mission to

the next and the same structures apply

to all. Because engineers apply the

same fundamental mechanisms (state

estimation, goal-based operation, and

closed-loop control) to solve problems,

they can use this common framework

to instantiate these solutions. Details

may vary; however, much of the basic

structure can be inherited. Common

patterns will guide more rapid develop-

ment, and specific designs may be

reusable because the structure in

subsequent systems will be similar.

16

The MDS approach is
complemented by an in-
novative design philoso-
phy that expands soft-
ware capabilities and will
solve many of our future
software mission issues.

These are examples
of the benefits of MDS
design —

Goal-Based Commanding
Simplifies Operations

MDS architecture defines
and implements goal-
based operations to
allow mission operators
to make direct state-
ments of intent (as con-
straints on state) when
commanding the system.
This technique:

• Provides a clean sepa-
ration between “what”
and “how.”

• Allows simple to sophis-
ticated onboard fault
handling.

• Enables autonomous re-
covery of activities, even
in noncritical situations.

Onboard Resource Manage-
ment Maximizes Spacecraft
Capabilities

Resources can be man-
aged on board and in real
time; thus:

• Resources can be
deliberately but safely
oversubscribed.

• Prioritized goals allow
more important activities
to run up to “real”
rather than “predicted”
resource limits.

Reusable Core Software Im-
proves Multimission Design
and Implementation

MDS builds on a common
framework; the same
core software can be
used for many missions.

• MDS capitalizes on les-
sons learned and auto-
matically passes them on
to future missions by in-
corporating them into the
multimission software.

• As software is used
and reused for subse-
quent missions, the
software evolves and
improves.

MDS Design Promotes
Better Practices

MDS encourages better
engineering practices
through a software
framework that:

• Requires engineers to
think through estimation
and control as separate
tasks and facilitates
their interaction.

• Defines several design
patterns to facilitate
clean, safe designs.

State-Based Systems Engi-
neering Creates a Common
Approach

State-based systems
engineering enables
systems engineers and
software engineers
to share a common
approach in defining,
developing, testing,
operating, and visualiz-
ing what systems do.

• The MDS framework
requires that state, mea-
surements, constraints,
telemetry, plans, etc., be
represented as software
objects.

• In this framework, the
language of systems en-
gineering becomes the
language of design for
adaptations of MDS
reusable software.

Faster Technology Infusion
Supports Autonomous
Capabilities

MDS uses a uniform
architecture for flight
and ground systems.

• Ground capabilities
can be migrated without
rewriting them.

• Migration can take
place in the same mis-
sion, reducing infusion
time from years to
months.

17

Theme 12: Navigation and attitude

control must build from a common

mathematical base.

Problem MDS Addresses: Navigation and
attitude control, though required to solve
many similar problems, have tradition-

ally not worked as tightly as they might.

In interplanetary space, navigation
and attitude control operate on vastly

different time scales and their dy-
namics don’t greatly affect each
other. In upcoming deep space mis-

sions, the required coupling will be
much tighter. For example, escape ve-
locity near an asteroid is so small that

firing thrusters for attitude control
can greatly affect trajectory. Likewise,
landing on a planetary surface or

docking with another vehicle, as in a
sample-return mission, requires navi-
gation and attitude corrections on
similar time scales.

The same forces influence navigation
and attitude control. They are both
involved in tasks such as pointing.

Both are concerned with dynamics,
solving geometry problems, and so
forth. As part of the MDS approach in

designing common architectural
mechanisms for common problems,
building a shared set of frameworks

for navigation and attitude control is
essential. This shared set of frame-
works ultimately enables the sort of

tightly coupled, six-degrees-of-free-
dom control required for ambitious
future missions.

Theme 11: Separate data manage-

ment duties and structures from

those of data transport.

Problem MDS Addresses: Data manage-

ment and data transport share a tightly
intertwined heritage in space systems as a
result of the limited resources available to

these functions in earlier systems. The
coupling of these two capabilities limits
their evolution and flexibility and compli-

cates integration.

MDS distinguishes clearly between
data management and data transport.

The former elevates data products as
entities in their own right, rather than
as units of transport. In MDS, data

products are software objects that can
be created, updated, compressed, sum-
marized or aged, whether or not they

are destined for transport. In fact, data
management is a service that tran-
scends the flight–ground divide so that

data products are treated consistently
in both places. Data transport, in
contrast, can access any data product

— regardless of its internal structure —
and serialize it for transport between
flight and ground. Packet formats and

link protocols are completely hidden
from the level of data management.
Decoupling these two capabilities

keeps the design and testing simpler
for each and allows for independent
improvements.

18

Theme 13: Design interfaces

to accommodate foreseeable

advances in technology.

Problem MDS Addresses: Software tech-

nology has generally lacked an infra-
structure to support its demonstration or
evaluation in a fully integrated flight

system.

MDS will serve missions for many
years to come. As software technol-

ogy advances are made in control
systems, fault detection and diagno-
sis, planning and scheduling, data-

bases, and communication protocols,
MDS must be prepared to exploit
these technologies.

Nevertheless, MDS needs to maintain
some architectural stability to amor-
tize its cost over its missions. The

strategy for achieving this is based
on careful design of architectural in-
terfaces, behind which a variety of

technical approaches can be used.
Specifically, MDS designers have con-
sulted with researchers to understand

how software interfaces may need to
evolve, and then implemented a re-
stricted subset of the interfaces using

current mission-ready technology.
When more advanced technology
becomes mission-ready, the fuller in-

terface will be implemented in an up-
ward compatible manner, namely, in
a manner that still works for interface

clients using the restrictive subset.
Thus, interface client software is not
forced to change on the same sched-

ule as interface provider software.

Missions can use a common set

of core elements to construct a

variety of software for complex

applications — entry-descent-

landing, formation flying, in situ

exploration, cross-link vehicle-to-

vehicle operation, and more.

19

In the past three years, the MDS project completed

the design of the core architecture that will be

used for future deep space flight and ground soft-

ware. Now the project is organizing its develop-

ment activities — a series of demonstrations to

test the architecture’s mission application. Two

upcoming demonstrations — Mars entry-descent-

landing (EDL) and surface rover in situ operations

— will test the MDS framework to ensure its readi-

ness for actual missions. These demonstrations

will involve mobility, science instrument control,

and experimentation.

The design phase for the EDL demonstration is

underway; the details of the rover demonstration

are being developed.

20

I m p l e m e n t a t i o n

21

Demonstrations

of the MDS

framework in

real mission

scenarios will

help the MDS

team evaluate

the software

development

methodology.

M D S

The EDL Demonstration

Entry-descent-landing is a time-critical

event that requires complex data pro-
cessing and decision making. EDL
offers no opportunity for ground in-

tervention and requires very rapid
fault recovery and high performance.
The demonstration is designed to

stress the MDS design to ensure that
the framework is suitable for this kind
of mission application.

Phase 1 of the EDL demonstration
will take place in a simulated environ-
ment and will cover several scenarios,

beginning a few hours before atmo-
spheric entry and proceeding through
initial post-landing operations. This

phase also will include fault testing.

In phase 2, MDS will work with the
Mars team to adapt MDS components

to the EDL demonstration. A parallel
hardware adaptation will also begin.
These efforts will introduce resource

management capabilities and thor-
oughly explore fault-protection issues.

The Rover Demonstration

The second demonstration for the
MDS framework is Mars rover in situ

operation. Because ground involve-
ment in this operation is intermittent,
too slow, or not possible, autonomy is

needed to accommodate uncertainty
and improve science return. The harsh
and variable environment that the

rover will traverse results in tight re-
source margins that will be hard to
predict. To test the MDS framework,

the rover demonstration is tenta-
tively planned to address a variety of

scenarios like these:

1. Maneuver in a variety of terrains.

2. Plan a series of competing activi-

ties for mobility, science, and tele-
communication in the presence of
constraints like the day–night

cycle, telecommunications oppor-
tunities, power management, tem-
perature management, and more.

3. Perform various tests that stress
the system using faults, margin
problems, maneuvering difficul-

ties, etc.

4. Incorporate rover ground systems
to operate the rover and its

payload.

5. Operate an articulated rover arm.

6. Gather, store, process, and trans-

port simulated science data.

The EDL and rover demonstrations
will test the MDS framework in real

mission scenarios and will also help
the MDS team evaluate the software
development methodology, which

focuses on using common software,
structures, and design process.

Software Development

Methodology

MDS uses an iterative life cycle

approach in the development and
release of all its products. This itera-

22

tive approach allows the team to
divide development efforts into

smaller, simpler, and more manageable
tasks. Most important, customers are
involved in the early development

phases. They can work side by side
with the MDS team in the early stages
of prototyping to ensure that the

evolving product meets mission
requirements. This process allows

customers to test early prototype ver-
sions against various scenarios and
make adjustments as the product

evolves. As a result, customers and
MDS managers are able to judge
project progress in terms of function-

ality. The benefits: Customers have
more choices, and because integration
is already done, costs are reduced.

The Mission Data System

project was formed in April

1998, with the first year’s

effort dedicated to the

analysis of state-based

architecture. Since then,

the focus has been on

requirement capture,

detailed design, and core

software development. The

next phase will focus on

adaptations that demon-

strate the framework is

suitable for mission

operations.

23

The MDS approach to software engineering holds

potential for widespread application in research and

industry. Any industrial system that uses closed-loop

control for operations in an unpredictable environment

could be developed more efficiently using the MDS

framework. These systems make a careful accounting

of state in order to operate safely. State is a first-order

element in the MDS framework; therefore, the frame-

work allows complex system behavior to be captured

in a straightforward design. For example, MDS might

be used to control a petrochemical plant that requires

the coordination of hundreds of valves, pumps, and

other components. In the traditional approach, control

is translated into coordinated sequences. As the plant

grows, emergent behaviors become difficult to predict,

and the system becomes vulnerable to faults. In the

MDS approach, the system directly implements control

in terms of state — no translation is needed. Conse-

quently, the MDS approach is both easier to understand

and more fault tolerant.

24

Industrial and

research

developers

are assured a

quality tool

evaluated

in the most

rigorous of

environments:

spaceflight

testing.

& . C o m m e r c i a l
R e s e a r c h .

O p p o r t u n i t i e s

25

26

L I C E N S I N G M D S

The California Institute

of Technology (Caltech)

is currently patenting the

MDS software design.

Caltech/JPL will then be

able to offer licenses to

companies who want

to build on the MDS

framework.

MDS might be used in a wide vari-
ety of nonflight and research appli-
cations, such as:

• Control systems for automobiles

• Avionics systems for commercial
and military flight

• Next-generation home appliances

• Physical plants like heating and
air conditioning systems

• Industrial processing

The MDS framework also offers a
potential advantage to technology

programs. Historically, new tech-
nology has not been integrated
easily into flight programs or other

deployed systems. New technology
developed on an MDS platform,
however, could be migrated easily

from the laboratory to an MDS-
based deployed system.

Several factors facilitate technology

transfer. First, the same framework
is used; therefore, customers can

evaluate how the technology per-
forms in real applications. Second,
integration of new technology is sim-

plified. Third, once the technology is
integrated, it can be used by a num-
ber of third parties because MDS can

be widely deployed.

Most important, industrial and re-
search developers are assured a qual-

ity tool that has been evaluated in the
most rigorous of environments —
spaceflight testing. MDS will become

a more robust product as it is widely
used and tested. And, because MDS is
being designed for deep space mis-

sions, its design must pass a very rig-
orous test regimen. This adds consid-
erable value. No internal verification

program will be able to provide com-
parable assurance of a solid system
core.

27

28

A . S t r a t e g i c

Future NASA missions will require more

sophisticated software than is possible with the

current generation of software architectures.

MDS is a significant step forward in

unifying software and systems engineering

practices. It incorporates modern software

development methodologies in a system design

based on 35 years of operational spaceflight

experience. This new way of thinking and

designing software has produced technology

that is a strategic step forward in realizing the

next generation of mission software.

S t e p . F o r w a r d

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL 400-931 01/01

